'use strict'; Object.defineProperty(exports, '__esModule', { value: true }); exports.default = void 0; /** * Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. * */ // This diff-sequences package implements the linear space variation in // An O(ND) Difference Algorithm and Its Variations by Eugene W. Myers // Relationship in notation between Myers paper and this package: // A is a // N is aLength, aEnd - aStart, and so on // x is aIndex, aFirst, aLast, and so on // B is b // M is bLength, bEnd - bStart, and so on // y is bIndex, bFirst, bLast, and so on // Δ = N - M is negative of baDeltaLength = bLength - aLength // D is d // k is kF // k + Δ is kF = kR - baDeltaLength // V is aIndexesF or aIndexesR (see comment below about Indexes type) // index intervals [1, N] and [1, M] are [0, aLength) and [0, bLength) // starting point in forward direction (0, 0) is (-1, -1) // starting point in reverse direction (N + 1, M + 1) is (aLength, bLength) // The “edit graph” for sequences a and b corresponds to items: // in a on the horizontal axis // in b on the vertical axis // // Given a-coordinate of a point in a diagonal, you can compute b-coordinate. // // Forward diagonals kF: // zero diagonal intersects top left corner // positive diagonals intersect top edge // negative diagonals insersect left edge // // Reverse diagonals kR: // zero diagonal intersects bottom right corner // positive diagonals intersect right edge // negative diagonals intersect bottom edge // The graph contains a directed acyclic graph of edges: // horizontal: delete an item from a // vertical: insert an item from b // diagonal: common item in a and b // // The algorithm solves dual problems in the graph analogy: // Find longest common subsequence: path with maximum number of diagonal edges // Find shortest edit script: path with minimum number of non-diagonal edges // Input callback function compares items at indexes in the sequences. // Output callback function receives the number of adjacent items // and starting indexes of each common subsequence. // Either original functions or wrapped to swap indexes if graph is transposed. // Indexes in sequence a of last point of forward or reverse paths in graph. // Myers algorithm indexes by diagonal k which for negative is bad deopt in V8. // This package indexes by iF and iR which are greater than or equal to zero. // and also updates the index arrays in place to cut memory in half. // kF = 2 * iF - d // kR = d - 2 * iR // Division of index intervals in sequences a and b at the middle change. // Invariant: intervals do not have common items at the start or end. const pkg = 'diff-sequences'; // for error messages const NOT_YET_SET = 0; // small int instead of undefined to avoid deopt in V8 // Return the number of common items that follow in forward direction. // The length of what Myers paper calls a “snake” in a forward path. const countCommonItemsF = (aIndex, aEnd, bIndex, bEnd, isCommon) => { let nCommon = 0; while (aIndex < aEnd && bIndex < bEnd && isCommon(aIndex, bIndex)) { aIndex += 1; bIndex += 1; nCommon += 1; } return nCommon; }; // Return the number of common items that precede in reverse direction. // The length of what Myers paper calls a “snake” in a reverse path. const countCommonItemsR = (aStart, aIndex, bStart, bIndex, isCommon) => { let nCommon = 0; while (aStart <= aIndex && bStart <= bIndex && isCommon(aIndex, bIndex)) { aIndex -= 1; bIndex -= 1; nCommon += 1; } return nCommon; }; // A simple function to extend forward paths from (d - 1) to d changes // when forward and reverse paths cannot yet overlap. const extendPathsF = (d, aEnd, bEnd, bF, isCommon, aIndexesF, iMaxF) => { // Unroll the first iteration. let iF = 0; let kF = -d; // kF = 2 * iF - d let aFirst = aIndexesF[iF]; // in first iteration always insert let aIndexPrev1 = aFirst; // prev value of [iF - 1] in next iteration aIndexesF[iF] += countCommonItemsF( aFirst + 1, aEnd, bF + aFirst - kF + 1, bEnd, isCommon ); // Optimization: skip diagonals in which paths cannot ever overlap. const nF = d < iMaxF ? d : iMaxF; // The diagonals kF are odd when d is odd and even when d is even. for (iF += 1, kF += 2; iF <= nF; iF += 1, kF += 2) { // To get first point of path segment, move one change in forward direction // from last point of previous path segment in an adjacent diagonal. // In last possible iteration when iF === d and kF === d always delete. if (iF !== d && aIndexPrev1 < aIndexesF[iF]) { aFirst = aIndexesF[iF]; // vertical to insert from b } else { aFirst = aIndexPrev1 + 1; // horizontal to delete from a if (aEnd <= aFirst) { // Optimization: delete moved past right of graph. return iF - 1; } } // To get last point of path segment, move along diagonal of common items. aIndexPrev1 = aIndexesF[iF]; aIndexesF[iF] = aFirst + countCommonItemsF(aFirst + 1, aEnd, bF + aFirst - kF + 1, bEnd, isCommon); } return iMaxF; }; // A simple function to extend reverse paths from (d - 1) to d changes // when reverse and forward paths cannot yet overlap. const extendPathsR = (d, aStart, bStart, bR, isCommon, aIndexesR, iMaxR) => { // Unroll the first iteration. let iR = 0; let kR = d; // kR = d - 2 * iR let aFirst = aIndexesR[iR]; // in first iteration always insert let aIndexPrev1 = aFirst; // prev value of [iR - 1] in next iteration aIndexesR[iR] -= countCommonItemsR( aStart, aFirst - 1, bStart, bR + aFirst - kR - 1, isCommon ); // Optimization: skip diagonals in which paths cannot ever overlap. const nR = d < iMaxR ? d : iMaxR; // The diagonals kR are odd when d is odd and even when d is even. for (iR += 1, kR -= 2; iR <= nR; iR += 1, kR -= 2) { // To get first point of path segment, move one change in reverse direction // from last point of previous path segment in an adjacent diagonal. // In last possible iteration when iR === d and kR === -d always delete. if (iR !== d && aIndexesR[iR] < aIndexPrev1) { aFirst = aIndexesR[iR]; // vertical to insert from b } else { aFirst = aIndexPrev1 - 1; // horizontal to delete from a if (aFirst < aStart) { // Optimization: delete moved past left of graph. return iR - 1; } } // To get last point of path segment, move along diagonal of common items. aIndexPrev1 = aIndexesR[iR]; aIndexesR[iR] = aFirst - countCommonItemsR( aStart, aFirst - 1, bStart, bR + aFirst - kR - 1, isCommon ); } return iMaxR; }; // A complete function to extend forward paths from (d - 1) to d changes. // Return true if a path overlaps reverse path of (d - 1) changes in its diagonal. const extendOverlappablePathsF = ( d, aStart, aEnd, bStart, bEnd, isCommon, aIndexesF, iMaxF, aIndexesR, iMaxR, division ) => { const bF = bStart - aStart; // bIndex = bF + aIndex - kF const aLength = aEnd - aStart; const bLength = bEnd - bStart; const baDeltaLength = bLength - aLength; // kF = kR - baDeltaLength // Range of diagonals in which forward and reverse paths might overlap. const kMinOverlapF = -baDeltaLength - (d - 1); // -(d - 1) <= kR const kMaxOverlapF = -baDeltaLength + (d - 1); // kR <= (d - 1) let aIndexPrev1 = NOT_YET_SET; // prev value of [iF - 1] in next iteration // Optimization: skip diagonals in which paths cannot ever overlap. const nF = d < iMaxF ? d : iMaxF; // The diagonals kF = 2 * iF - d are odd when d is odd and even when d is even. for (let iF = 0, kF = -d; iF <= nF; iF += 1, kF += 2) { // To get first point of path segment, move one change in forward direction // from last point of previous path segment in an adjacent diagonal. // In first iteration when iF === 0 and kF === -d always insert. // In last possible iteration when iF === d and kF === d always delete. const insert = iF === 0 || (iF !== d && aIndexPrev1 < aIndexesF[iF]); const aLastPrev = insert ? aIndexesF[iF] : aIndexPrev1; const aFirst = insert ? aLastPrev // vertical to insert from b : aLastPrev + 1; // horizontal to delete from a // To get last point of path segment, move along diagonal of common items. const bFirst = bF + aFirst - kF; const nCommonF = countCommonItemsF( aFirst + 1, aEnd, bFirst + 1, bEnd, isCommon ); const aLast = aFirst + nCommonF; aIndexPrev1 = aIndexesF[iF]; aIndexesF[iF] = aLast; if (kMinOverlapF <= kF && kF <= kMaxOverlapF) { // Solve for iR of reverse path with (d - 1) changes in diagonal kF: // kR = kF + baDeltaLength // kR = (d - 1) - 2 * iR const iR = (d - 1 - (kF + baDeltaLength)) / 2; // If this forward path overlaps the reverse path in this diagonal, // then this is the middle change of the index intervals. if (iR <= iMaxR && aIndexesR[iR] - 1 <= aLast) { // Unlike the Myers algorithm which finds only the middle “snake” // this package can find two common subsequences per division. // Last point of previous path segment is on an adjacent diagonal. const bLastPrev = bF + aLastPrev - (insert ? kF + 1 : kF - 1); // Because of invariant that intervals preceding the middle change // cannot have common items at the end, // move in reverse direction along a diagonal of common items. const nCommonR = countCommonItemsR( aStart, aLastPrev, bStart, bLastPrev, isCommon ); const aIndexPrevFirst = aLastPrev - nCommonR; const bIndexPrevFirst = bLastPrev - nCommonR; const aEndPreceding = aIndexPrevFirst + 1; const bEndPreceding = bIndexPrevFirst + 1; division.nChangePreceding = d - 1; if (d - 1 === aEndPreceding + bEndPreceding - aStart - bStart) { // Optimization: number of preceding changes in forward direction // is equal to number of items in preceding interval, // therefore it cannot contain any common items. division.aEndPreceding = aStart; division.bEndPreceding = bStart; } else { division.aEndPreceding = aEndPreceding; division.bEndPreceding = bEndPreceding; } division.nCommonPreceding = nCommonR; if (nCommonR !== 0) { division.aCommonPreceding = aEndPreceding; division.bCommonPreceding = bEndPreceding; } division.nCommonFollowing = nCommonF; if (nCommonF !== 0) { division.aCommonFollowing = aFirst + 1; division.bCommonFollowing = bFirst + 1; } const aStartFollowing = aLast + 1; const bStartFollowing = bFirst + nCommonF + 1; division.nChangeFollowing = d - 1; if (d - 1 === aEnd + bEnd - aStartFollowing - bStartFollowing) { // Optimization: number of changes in reverse direction // is equal to number of items in following interval, // therefore it cannot contain any common items. division.aStartFollowing = aEnd; division.bStartFollowing = bEnd; } else { division.aStartFollowing = aStartFollowing; division.bStartFollowing = bStartFollowing; } return true; } } } return false; }; // A complete function to extend reverse paths from (d - 1) to d changes. // Return true if a path overlaps forward path of d changes in its diagonal. const extendOverlappablePathsR = ( d, aStart, aEnd, bStart, bEnd, isCommon, aIndexesF, iMaxF, aIndexesR, iMaxR, division ) => { const bR = bEnd - aEnd; // bIndex = bR + aIndex - kR const aLength = aEnd - aStart; const bLength = bEnd - bStart; const baDeltaLength = bLength - aLength; // kR = kF + baDeltaLength // Range of diagonals in which forward and reverse paths might overlap. const kMinOverlapR = baDeltaLength - d; // -d <= kF const kMaxOverlapR = baDeltaLength + d; // kF <= d let aIndexPrev1 = NOT_YET_SET; // prev value of [iR - 1] in next iteration // Optimization: skip diagonals in which paths cannot ever overlap. const nR = d < iMaxR ? d : iMaxR; // The diagonals kR = d - 2 * iR are odd when d is odd and even when d is even. for (let iR = 0, kR = d; iR <= nR; iR += 1, kR -= 2) { // To get first point of path segment, move one change in reverse direction // from last point of previous path segment in an adjacent diagonal. // In first iteration when iR === 0 and kR === d always insert. // In last possible iteration when iR === d and kR === -d always delete. const insert = iR === 0 || (iR !== d && aIndexesR[iR] < aIndexPrev1); const aLastPrev = insert ? aIndexesR[iR] : aIndexPrev1; const aFirst = insert ? aLastPrev // vertical to insert from b : aLastPrev - 1; // horizontal to delete from a // To get last point of path segment, move along diagonal of common items. const bFirst = bR + aFirst - kR; const nCommonR = countCommonItemsR( aStart, aFirst - 1, bStart, bFirst - 1, isCommon ); const aLast = aFirst - nCommonR; aIndexPrev1 = aIndexesR[iR]; aIndexesR[iR] = aLast; if (kMinOverlapR <= kR && kR <= kMaxOverlapR) { // Solve for iF of forward path with d changes in diagonal kR: // kF = kR - baDeltaLength // kF = 2 * iF - d const iF = (d + (kR - baDeltaLength)) / 2; // If this reverse path overlaps the forward path in this diagonal, // then this is a middle change of the index intervals. if (iF <= iMaxF && aLast - 1 <= aIndexesF[iF]) { const bLast = bFirst - nCommonR; division.nChangePreceding = d; if (d === aLast + bLast - aStart - bStart) { // Optimization: number of changes in reverse direction // is equal to number of items in preceding interval, // therefore it cannot contain any common items. division.aEndPreceding = aStart; division.bEndPreceding = bStart; } else { division.aEndPreceding = aLast; division.bEndPreceding = bLast; } division.nCommonPreceding = nCommonR; if (nCommonR !== 0) { // The last point of reverse path segment is start of common subsequence. division.aCommonPreceding = aLast; division.bCommonPreceding = bLast; } division.nChangeFollowing = d - 1; if (d === 1) { // There is no previous path segment. division.nCommonFollowing = 0; division.aStartFollowing = aEnd; division.bStartFollowing = bEnd; } else { // Unlike the Myers algorithm which finds only the middle “snake” // this package can find two common subsequences per division. // Last point of previous path segment is on an adjacent diagonal. const bLastPrev = bR + aLastPrev - (insert ? kR - 1 : kR + 1); // Because of invariant that intervals following the middle change // cannot have common items at the start, // move in forward direction along a diagonal of common items. const nCommonF = countCommonItemsF( aLastPrev, aEnd, bLastPrev, bEnd, isCommon ); division.nCommonFollowing = nCommonF; if (nCommonF !== 0) { // The last point of reverse path segment is start of common subsequence. division.aCommonFollowing = aLastPrev; division.bCommonFollowing = bLastPrev; } const aStartFollowing = aLastPrev + nCommonF; // aFirstPrev const bStartFollowing = bLastPrev + nCommonF; // bFirstPrev if (d - 1 === aEnd + bEnd - aStartFollowing - bStartFollowing) { // Optimization: number of changes in forward direction // is equal to number of items in following interval, // therefore it cannot contain any common items. division.aStartFollowing = aEnd; division.bStartFollowing = bEnd; } else { division.aStartFollowing = aStartFollowing; division.bStartFollowing = bStartFollowing; } } return true; } } } return false; }; // Given index intervals and input function to compare items at indexes, // divide at the middle change. // // DO NOT CALL if start === end, because interval cannot contain common items // and because this function will throw the “no overlap” error. const divide = ( nChange, aStart, aEnd, bStart, bEnd, isCommon, aIndexesF, aIndexesR, division // output ) => { const bF = bStart - aStart; // bIndex = bF + aIndex - kF const bR = bEnd - aEnd; // bIndex = bR + aIndex - kR const aLength = aEnd - aStart; const bLength = bEnd - bStart; // Because graph has square or portrait orientation, // length difference is minimum number of items to insert from b. // Corresponding forward and reverse diagonals in graph // depend on length difference of the sequences: // kF = kR - baDeltaLength // kR = kF + baDeltaLength const baDeltaLength = bLength - aLength; // Optimization: max diagonal in graph intersects corner of shorter side. let iMaxF = aLength; let iMaxR = aLength; // Initialize no changes yet in forward or reverse direction: aIndexesF[0] = aStart - 1; // at open start of interval, outside closed start aIndexesR[0] = aEnd; // at open end of interval if (baDeltaLength % 2 === 0) { // The number of changes in paths is 2 * d if length difference is even. const dMin = (nChange || baDeltaLength) / 2; const dMax = (aLength + bLength) / 2; for (let d = 1; d <= dMax; d += 1) { iMaxF = extendPathsF(d, aEnd, bEnd, bF, isCommon, aIndexesF, iMaxF); if (d < dMin) { iMaxR = extendPathsR(d, aStart, bStart, bR, isCommon, aIndexesR, iMaxR); } else if ( // If a reverse path overlaps a forward path in the same diagonal, // return a division of the index intervals at the middle change. extendOverlappablePathsR( d, aStart, aEnd, bStart, bEnd, isCommon, aIndexesF, iMaxF, aIndexesR, iMaxR, division ) ) { return; } } } else { // The number of changes in paths is 2 * d - 1 if length difference is odd. const dMin = ((nChange || baDeltaLength) + 1) / 2; const dMax = (aLength + bLength + 1) / 2; // Unroll first half iteration so loop extends the relevant pairs of paths. // Because of invariant that intervals have no common items at start or end, // and limitation not to call divide with empty intervals, // therefore it cannot be called if a forward path with one change // would overlap a reverse path with no changes, even if dMin === 1. let d = 1; iMaxF = extendPathsF(d, aEnd, bEnd, bF, isCommon, aIndexesF, iMaxF); for (d += 1; d <= dMax; d += 1) { iMaxR = extendPathsR( d - 1, aStart, bStart, bR, isCommon, aIndexesR, iMaxR ); if (d < dMin) { iMaxF = extendPathsF(d, aEnd, bEnd, bF, isCommon, aIndexesF, iMaxF); } else if ( // If a forward path overlaps a reverse path in the same diagonal, // return a division of the index intervals at the middle change. extendOverlappablePathsF( d, aStart, aEnd, bStart, bEnd, isCommon, aIndexesF, iMaxF, aIndexesR, iMaxR, division ) ) { return; } } } /* istanbul ignore next */ throw new Error( `${pkg}: no overlap aStart=${aStart} aEnd=${aEnd} bStart=${bStart} bEnd=${bEnd}` ); }; // Given index intervals and input function to compare items at indexes, // return by output function the number of adjacent items and starting indexes // of each common subsequence. Divide and conquer with only linear space. // // The index intervals are half open [start, end) like array slice method. // DO NOT CALL if start === end, because interval cannot contain common items // and because divide function will throw the “no overlap” error. const findSubsequences = ( nChange, aStart, aEnd, bStart, bEnd, transposed, callbacks, aIndexesF, aIndexesR, division // temporary memory, not input nor output ) => { if (bEnd - bStart < aEnd - aStart) { // Transpose graph so it has portrait instead of landscape orientation. // Always compare shorter to longer sequence for consistency and optimization. transposed = !transposed; if (transposed && callbacks.length === 1) { // Lazily wrap callback functions to swap args if graph is transposed. const {foundSubsequence, isCommon} = callbacks[0]; callbacks[1] = { foundSubsequence: (nCommon, bCommon, aCommon) => { foundSubsequence(nCommon, aCommon, bCommon); }, isCommon: (bIndex, aIndex) => isCommon(aIndex, bIndex) }; } const tStart = aStart; const tEnd = aEnd; aStart = bStart; aEnd = bEnd; bStart = tStart; bEnd = tEnd; } const {foundSubsequence, isCommon} = callbacks[transposed ? 1 : 0]; // Divide the index intervals at the middle change. divide( nChange, aStart, aEnd, bStart, bEnd, isCommon, aIndexesF, aIndexesR, division ); const { nChangePreceding, aEndPreceding, bEndPreceding, nCommonPreceding, aCommonPreceding, bCommonPreceding, nCommonFollowing, aCommonFollowing, bCommonFollowing, nChangeFollowing, aStartFollowing, bStartFollowing } = division; // Unless either index interval is empty, they might contain common items. if (aStart < aEndPreceding && bStart < bEndPreceding) { // Recursely find and return common subsequences preceding the division. findSubsequences( nChangePreceding, aStart, aEndPreceding, bStart, bEndPreceding, transposed, callbacks, aIndexesF, aIndexesR, division ); } // Return common subsequences that are adjacent to the middle change. if (nCommonPreceding !== 0) { foundSubsequence(nCommonPreceding, aCommonPreceding, bCommonPreceding); } if (nCommonFollowing !== 0) { foundSubsequence(nCommonFollowing, aCommonFollowing, bCommonFollowing); } // Unless either index interval is empty, they might contain common items. if (aStartFollowing < aEnd && bStartFollowing < bEnd) { // Recursely find and return common subsequences following the division. findSubsequences( nChangeFollowing, aStartFollowing, aEnd, bStartFollowing, bEnd, transposed, callbacks, aIndexesF, aIndexesR, division ); } }; const validateLength = (name, arg) => { const type = typeof arg; if (type !== 'number') { throw new TypeError(`${pkg}: ${name} typeof ${type} is not a number`); } if (!Number.isSafeInteger(arg)) { throw new RangeError(`${pkg}: ${name} value ${arg} is not a safe integer`); } if (arg < 0) { throw new RangeError(`${pkg}: ${name} value ${arg} is a negative integer`); } }; const validateCallback = (name, arg) => { const type = typeof arg; if (type !== 'function') { throw new TypeError(`${pkg}: ${name} typeof ${type} is not a function`); } }; // Compare items in two sequences to find a longest common subsequence. // Given lengths of sequences and input function to compare items at indexes, // return by output function the number of adjacent items and starting indexes // of each common subsequence. var _default = (aLength, bLength, isCommon, foundSubsequence) => { validateLength('aLength', aLength); validateLength('bLength', bLength); validateCallback('isCommon', isCommon); validateCallback('foundSubsequence', foundSubsequence); // Count common items from the start in the forward direction. const nCommonF = countCommonItemsF(0, aLength, 0, bLength, isCommon); if (nCommonF !== 0) { foundSubsequence(nCommonF, 0, 0); } // Unless both sequences consist of common items only, // find common items in the half-trimmed index intervals. if (aLength !== nCommonF || bLength !== nCommonF) { // Invariant: intervals do not have common items at the start. // The start of an index interval is closed like array slice method. const aStart = nCommonF; const bStart = nCommonF; // Count common items from the end in the reverse direction. const nCommonR = countCommonItemsR( aStart, aLength - 1, bStart, bLength - 1, isCommon ); // Invariant: intervals do not have common items at the end. // The end of an index interval is open like array slice method. const aEnd = aLength - nCommonR; const bEnd = bLength - nCommonR; // Unless one sequence consists of common items only, // therefore the other trimmed index interval consists of changes only, // find common items in the trimmed index intervals. const nCommonFR = nCommonF + nCommonR; if (aLength !== nCommonFR && bLength !== nCommonFR) { const nChange = 0; // number of change items is not yet known const transposed = false; // call the original unwrapped functions const callbacks = [ { foundSubsequence, isCommon } ]; // Indexes in sequence a of last points in furthest reaching paths // from outside the start at top left in the forward direction: const aIndexesF = [NOT_YET_SET]; // from the end at bottom right in the reverse direction: const aIndexesR = [NOT_YET_SET]; // Initialize one object as output of all calls to divide function. const division = { aCommonFollowing: NOT_YET_SET, aCommonPreceding: NOT_YET_SET, aEndPreceding: NOT_YET_SET, aStartFollowing: NOT_YET_SET, bCommonFollowing: NOT_YET_SET, bCommonPreceding: NOT_YET_SET, bEndPreceding: NOT_YET_SET, bStartFollowing: NOT_YET_SET, nChangeFollowing: NOT_YET_SET, nChangePreceding: NOT_YET_SET, nCommonFollowing: NOT_YET_SET, nCommonPreceding: NOT_YET_SET }; // Find and return common subsequences in the trimmed index intervals. findSubsequences( nChange, aStart, aEnd, bStart, bEnd, transposed, callbacks, aIndexesF, aIndexesR, division ); } if (nCommonR !== 0) { foundSubsequence(nCommonR, aEnd, bEnd); } } }; exports.default = _default;