mirror of
https://github.com/ShusenTang/LeetCode.git
synced 2024-09-02 14:20:01 +00:00
129 lines
4.0 KiB
Markdown
129 lines
4.0 KiB
Markdown
![]() |
# [148. Sort List](https://leetcode.com/problems/sort-list/)
|
|||
|
# 思路
|
|||
|
常见排序方法有插入排序,选择排序,堆排序,快速排序,冒泡排序,归并排序,桶排序等等。
|
|||
|
但是时间复杂度为O(nlgn)只有快速排序,归并排序,堆排序, 而根据单链表的特点,最适于用归并排序(因为没法按索引访问元素所以快排不行, 而堆排序需要建堆空间不满足)。
|
|||
|
|
|||
|
## 思路一 归并排序递归版
|
|||
|
归并排序的基本思想就是用递归:
|
|||
|
核心其实是分治法 Divide and Conquer,就是将链表从中间断开分成两部分,左右两边再分别调用排序的递归函数sortList,得到各自有序的链表后,再进行merge,
|
|||
|
当拆到链表只有一个结点时,无法继续拆分了,而此时只包含一个结点的链表一定是有序的(即递归出口). 我们可以用快慢指针法找到链表的中点.
|
|||
|
|
|||
|
## 思路二 自底向上归并排序(非递归)
|
|||
|
思路一由于使用了递归, 所以严格来讲空间复杂度是不满足要求的. 思路一是采用的自顶向下递归进行的, 而如果我们采用自底向上进行归并排序的话就不需要递归调用了.
|
|||
|
|
|||
|
整个流程是: 初始时把每个节点当做一个有序链表, 然后两两进行归并, 这样每两个节点就是有序的; 然后再将两个包含两个节点的有序子链表进行归并, 这样每四个就是有序的,
|
|||
|
这样一直迭代下去直到整个链表都是有序的.
|
|||
|
|
|||
|
# C++
|
|||
|
## 思路一
|
|||
|
``` C++
|
|||
|
class Solution {
|
|||
|
private:
|
|||
|
ListNode* merge(ListNode* p1, ListNode* p2){
|
|||
|
ListNode* head = new ListNode(-1);
|
|||
|
// head -> next = NULL;
|
|||
|
|
|||
|
ListNode *p = head;
|
|||
|
while(p1 && p2){
|
|||
|
if(p1 -> val <= p2 -> val){
|
|||
|
p -> next = p1;
|
|||
|
p1 = p1 -> next;
|
|||
|
}
|
|||
|
else{
|
|||
|
p -> next = p2;
|
|||
|
p2 = p2 -> next;
|
|||
|
}
|
|||
|
p = p -> next;
|
|||
|
}
|
|||
|
p -> next = NULL;
|
|||
|
if(p1) p -> next = p1;
|
|||
|
else if(p2) p -> next = p2;
|
|||
|
|
|||
|
return head -> next;
|
|||
|
}
|
|||
|
public:
|
|||
|
ListNode* sortList(ListNode* head) {
|
|||
|
if(head == NULL || head -> next == NULL) return head;
|
|||
|
|
|||
|
ListNode *fast = head, *slow = head, *pre_slow;
|
|||
|
while(fast && fast -> next){
|
|||
|
fast = fast -> next -> next;
|
|||
|
pre_slow = slow;
|
|||
|
slow = slow -> next;
|
|||
|
}
|
|||
|
pre_slow -> next = NULL;
|
|||
|
return merge(sortList(head), sortList(slow));
|
|||
|
}
|
|||
|
};
|
|||
|
```
|
|||
|
|
|||
|
## 思路二
|
|||
|
``` C++
|
|||
|
/**
|
|||
|
* 自底向上归并排序
|
|||
|
* 参考https://leetcode.com/problems/sort-list/discuss/46712/Bottom-to-up(not-recurring)-with-o(1)-space-complextity-and-o(nlgn)-time-complextity
|
|||
|
*/
|
|||
|
class Solution {
|
|||
|
private:
|
|||
|
// 将链表分成两部分, 第一部分包含n个节点, 注意返回的是第二个链表的头
|
|||
|
ListNode* split(ListNode *head, int n){
|
|||
|
for(int i = 1; head && i < n; i++) head = head->next;
|
|||
|
|
|||
|
if(!head) return NULL;
|
|||
|
ListNode *second = head->next;
|
|||
|
head->next = NULL;
|
|||
|
return second;
|
|||
|
}
|
|||
|
|
|||
|
// merge两个有序链表, 并将merge后的链表接在head后面, 返回的是结果链表的最后一个节点
|
|||
|
ListNode* merge(ListNode* l1, ListNode* l2, ListNode* head){
|
|||
|
ListNode *cur = head;
|
|||
|
while(l1 && l2){
|
|||
|
if(l1->val > l2->val){
|
|||
|
cur->next = l2;
|
|||
|
cur = l2;
|
|||
|
l2 = l2->next;
|
|||
|
}
|
|||
|
else{
|
|||
|
cur->next = l1;
|
|||
|
cur = l1;
|
|||
|
l1 = l1->next;
|
|||
|
}
|
|||
|
}
|
|||
|
cur -> next = (l1 ? l1 : l2);
|
|||
|
while(cur->next) cur = cur->next;
|
|||
|
return cur;
|
|||
|
}
|
|||
|
|
|||
|
public:
|
|||
|
ListNode *sortList(ListNode *head) {
|
|||
|
if(!head || !(head->next)) return head;
|
|||
|
|
|||
|
// 获得链表长度
|
|||
|
ListNode* cur = head;
|
|||
|
int length = 0;
|
|||
|
while(cur){
|
|||
|
length++;
|
|||
|
cur = cur->next;
|
|||
|
}
|
|||
|
|
|||
|
ListNode *dummy = new ListNode(-1);
|
|||
|
dummy -> next = head;
|
|||
|
ListNode *left, *right, *tail;
|
|||
|
for(int step = 1; step < length; step <<= 1){ // 左移1位比乘2要快
|
|||
|
cur = dummy -> next;
|
|||
|
tail = dummy;
|
|||
|
while(cur){
|
|||
|
left = cur;
|
|||
|
right = split(left, step);
|
|||
|
cur = split(right,step);
|
|||
|
tail = merge(left, right, tail);
|
|||
|
}
|
|||
|
}
|
|||
|
return dummy -> next;
|
|||
|
}
|
|||
|
};
|
|||
|
```
|
|||
|
|
|||
|
|