2019-11-14 12:12:21 +00:00
|
|
|
# [313. Super Ugly Number](https://leetcode.com/problems/super-ugly-number/)
|
|
|
|
# 思路
|
|
|
|
此题要求第n个超级丑陋的数, 与[264. Ugly Number II.md](https://leetcode.com/problems/ugly-number-ii/)是类似的, 只是这里质数可以任意给定,
|
|
|
|
加大了难度, 但本质是一样的. 大致思路就是直接从给定的质数构造ugly数, 可参见[264 题解](https://github.com/ShusenTang/LeetCode/blob/master/solutions/264.%20Ugly%20Number%20II.md).
|
|
|
|
|
2019-11-15 05:21:54 +00:00
|
|
|
## 思路一
|
2019-11-14 12:12:21 +00:00
|
|
|
在求k个候选值的最小值时, 可以采用直接遍历一遍的思路, 这样总的复杂度就是O(kn).
|
|
|
|
> STL中`min_element`和`max_element`可以求一个vector的最小/大值, 返回的是迭代器.
|
|
|
|
|
2019-11-15 05:21:54 +00:00
|
|
|
## 思路二
|
2019-11-14 12:12:21 +00:00
|
|
|
当k比较大时候思路一就显得可优化了, 我们可以维护一个大小为k的候选值最小堆, 每个元素包含两个域: value和idx, 分别代表值和由哪一个质数得来, 可以用pair实现.
|
|
|
|
|
|
|
|
每当我们从堆顶pop出一个元素, 这个元素的value就是下一个丑陋的数(注意可能重复), 这个元素的idx就代表从哪一个质数得来, 应该将该质数的idx加一, 再向堆中插入下一个候选值.
|
2019-11-14 13:48:12 +00:00
|
|
|
由于向堆中插入和pop都是对数级别的, 所以总的时间复杂度就是O(nlogk). (但亲测慢很多)
|
2019-11-14 12:12:21 +00:00
|
|
|
|
|
|
|
> 注意学习`pair`以及`priority_queue`的用法.
|
|
|
|
|
2019-11-14 13:48:12 +00:00
|
|
|
更新:
|
|
|
|
## 思路二改进
|
|
|
|
思路二会比思路一慢很多, 应该有两个原因:
|
|
|
|
1. 测试样例的k不是很大;
|
|
|
|
2. 因为堆里面包含大量重复元素, 所以while循环不止执行n次, 所以复杂度应该不止O(nlogk).
|
|
|
|
|
|
|
|
所以我们考虑让重复值不要进入堆, 网上只找到了代码没有解释, 代码我也没咋看懂, 这里只给出代码, 有空了再好好想想.
|
|
|
|
|
|
|
|
亲测会比思路二快很多.
|
|
|
|
|
2019-11-14 12:12:21 +00:00
|
|
|
# C++
|
|
|
|
## 思路一
|
|
|
|
``` C++
|
|
|
|
class Solution {
|
|
|
|
public:
|
|
|
|
int nthSuperUglyNumber(int n, vector<int>& primes) {
|
|
|
|
vector<int>nums(n, INT_MAX), candidate(primes.begin(), primes.end()), idx(n, 0);
|
|
|
|
nums[0] = 1;
|
|
|
|
for(int i = 1; i < n; i++){
|
|
|
|
// nums[i] = *min_element(candidate.begin(), candidate.end());
|
|
|
|
for(int &c: candidate) nums[i] = min(nums[i], c);
|
|
|
|
|
|
|
|
for(int j = 0; j < primes.size(); j++)
|
|
|
|
if(candidate[j] == nums[i])
|
|
|
|
candidate[j] = nums[++idx[j]] * primes[j];
|
|
|
|
}
|
|
|
|
return nums.back();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
```
|
|
|
|
|
|
|
|
## 思路二
|
|
|
|
``` C++
|
|
|
|
class Solution {
|
|
|
|
public:
|
|
|
|
int nthSuperUglyNumber(int n, vector<int>& primes) {
|
|
|
|
vector<int> nums(n, INT_MAX), idx(prime_n, 0);
|
|
|
|
nums[0] = 1;
|
|
|
|
|
|
|
|
int prime_n = primes.size();
|
|
|
|
// value, produce_by_which_prime
|
|
|
|
priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int,int>>> minheap;
|
|
|
|
for(int i = 0; i < prime_n; i++)
|
|
|
|
minheap.push({primes[i], i});
|
|
|
|
|
|
|
|
int count = 1;
|
|
|
|
while(count < n){
|
|
|
|
pair<int, int>next = minheap.top();
|
|
|
|
minheap.pop();
|
|
|
|
|
|
|
|
if(nums[count - 1] != next.first){
|
|
|
|
nums[count] = next.first;
|
|
|
|
count++;
|
|
|
|
} // 避免重复
|
|
|
|
|
|
|
|
idx[next.second]++;
|
|
|
|
minheap.push({nums[idx[next.second]] * primes[next.second], next.second});
|
|
|
|
}
|
|
|
|
return nums.back();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
```
|
|
|
|
|
2019-11-14 13:48:12 +00:00
|
|
|
## 思路二改进
|
|
|
|
``` C++
|
|
|
|
class Solution {
|
|
|
|
public:
|
|
|
|
int nthSuperUglyNumber(int n, vector<int>& primes) {
|
|
|
|
int prime_n = primes.size();
|
|
|
|
vector<int>nums(n, 0), idx(prime_n, 0), last_factor(n, 0);
|
|
|
|
nums[0] = 1;
|
|
|
|
|
|
|
|
// pair: UglyNumber, produce_by_which_prime
|
|
|
|
priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int,int>>> minheap;
|
|
|
|
for(int i = 0; i < prime_n; i++)
|
|
|
|
minheap.push({primes[i], i});
|
|
|
|
|
|
|
|
for(int i = 1; i < n; i++){
|
|
|
|
pair<int, int>next = minheap.top(); minheap.pop();
|
|
|
|
nums[i] = next.first;
|
|
|
|
last_factor[i] = next.second;
|
|
|
|
|
|
|
|
idx[next.second]++;
|
|
|
|
// skip duplicates
|
|
|
|
while(last_factor[idx[next.second]] > next.second)
|
|
|
|
idx[next.second]++;
|
|
|
|
|
|
|
|
minheap.push({nums[idx[next.second]] * primes[next.second], next.second});
|
|
|
|
}
|
|
|
|
for(int a: last_factor) cout << a << " ";
|
|
|
|
return nums.back();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
```
|
|
|
|
|