mirror of
https://github.com/ShusenTang/LeetCode.git
synced 2024-09-02 14:20:01 +00:00
113 lines
4.2 KiB
Markdown
113 lines
4.2 KiB
Markdown
![]() |
# [90. Subsets II](https://leetcode.com/problems/subsets-ii/)
|
|||
|
# 思路
|
|||
|
这题就是[78. Subsets](https://leetcode.com/problems/subsets/)的升级版,做法也和此题类似,可参考之前[78. Subsets题解](https://github.com/ShusenTang/LeetCode/blob/master/solutions/78.%20Subsets.md)。
|
|||
|
为了使相同的元素都是挨着的,我们首先需要对nums进行排序。
|
|||
|
## 思路一、DFS
|
|||
|
构造一棵二叉树,左子树表示选择该层处理的节点,右子树表示不选择,最终的叶节点就是所有子集合,以[1,2,2]为例,树的结构如下:
|
|||
|
|
|||
|
```
|
|||
|
[]
|
|||
|
/ \
|
|||
|
/ \
|
|||
|
/ \
|
|||
|
[1] []
|
|||
|
/ \ / \
|
|||
|
/ \ / \
|
|||
|
[1 2] [1] [2] []
|
|||
|
/ \ / \ / \ / \
|
|||
|
[1 2 2] [1 2] X [1] [2 2] [2] X []
|
|||
|
```
|
|||
|
需要注意去掉重复值,即对树进行剪枝: 当前一层的元素(`nums[level-1]`)未被访问且`nums[level]==nums[level-1]`时,当前元素`nums[level]`也不应该访问,即只沿右子树下降。
|
|||
|
## 思路二
|
|||
|
此题也可以使用迭代的方式来完成此题。
|
|||
|
参考[78. Subsets题解](https://github.com/ShusenTang/LeetCode/blob/master/solutions/78.%20Subsets.md),当处理到第一个2时,此时的子集合为[], [1], [2], [1, 2],
|
|||
|
而这时再处理第二个2时,如果在[]和[1]后直接加2会产生重复,所以只能在上一个循环生成的后两个子集合后面加2。
|
|||
|
所以我们用last来记录上一个处理的数字,然后判定当前的数字和上面的是否相同,若不同,则循环还是从0到当前子集的个数,若相同,
|
|||
|
则新子集个数减去之前循环时子集的个数当做起点来循环,这样就不会产生重复了。
|
|||
|
|
|||
|
|
|||
|
# C++
|
|||
|
## 思路一
|
|||
|
### 好理解版
|
|||
|
``` C++
|
|||
|
class Solution {
|
|||
|
private:
|
|||
|
void DFS(vector<vector<int>>&res, vector<int>&subset, vector<bool>&visited, const vector<int>& nums, int level){
|
|||
|
if(level == nums.size()) { // 叶节点
|
|||
|
res.push_back(subset);
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
if(level > 0 && nums[level] == nums[level - 1] && !visited[level - 1]){
|
|||
|
DFS(res, subset, visited, nums, level + 1); // 沿右子树下降
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
// 沿左子树下降
|
|||
|
visited[level] = true;
|
|||
|
subset.push_back(nums[level]);
|
|||
|
DFS(res, subset, visited, nums, level + 1);
|
|||
|
visited[level] = false;
|
|||
|
subset.pop_back();
|
|||
|
// 沿右子树下降
|
|||
|
DFS(res, subset, visited, nums, level + 1);
|
|||
|
}
|
|||
|
public:
|
|||
|
vector<vector<int>> subsetsWithDup(vector<int>& nums) {
|
|||
|
vector<vector<int>>res;
|
|||
|
vector<int>subset;
|
|||
|
vector<bool>visited(nums.size(), false);
|
|||
|
sort(nums.begin(), nums.end());
|
|||
|
DFS(res, subset, visited, nums, 0);
|
|||
|
return res;
|
|||
|
}
|
|||
|
};
|
|||
|
```
|
|||
|
### 简洁版
|
|||
|
``` C++
|
|||
|
class Solution {
|
|||
|
void DFS(vector<vector<int>> &res, int level, vector<int> &subset, vector<int> &nums) {
|
|||
|
res.push_back(subset);
|
|||
|
for (int i = level; i < nums.size(); ++i) {
|
|||
|
subset.push_back(nums[i]);
|
|||
|
DFS(res, i + 1, subset, nums);
|
|||
|
subset.pop_back();
|
|||
|
while (i + 1 < nums.size() && nums[i] == nums[i + 1]) ++i;
|
|||
|
}
|
|||
|
}
|
|||
|
public:
|
|||
|
vector<vector<int>> subsetsWithDup(vector<int>& nums) {
|
|||
|
vector<vector<int>>res;
|
|||
|
vector<int>subset;
|
|||
|
vector<bool>visited(nums.size(), false);
|
|||
|
sort(nums.begin(), nums.end());
|
|||
|
DFS(res, 0, subset, nums);
|
|||
|
return res;
|
|||
|
}
|
|||
|
};
|
|||
|
```
|
|||
|
## 思路二
|
|||
|
``` C++
|
|||
|
class Solution {
|
|||
|
public:
|
|||
|
vector<vector<int>> subsetsWithDup(vector<int> &nums) {
|
|||
|
vector<vector<int>>res;
|
|||
|
res.push_back(vector<int>{});
|
|||
|
sort(nums.begin(), nums.end());
|
|||
|
int last = nums[0], size = 1;
|
|||
|
for(int i = 0; i < nums.size(); i++){
|
|||
|
if(last != nums[i]){
|
|||
|
last = nums[i];
|
|||
|
size = res.size();
|
|||
|
}
|
|||
|
int newSize = res.size();
|
|||
|
for (int j = newSize - size; j < newSize; ++j) {
|
|||
|
res.push_back(res[j]);
|
|||
|
res.back().push_back(nums[i]);
|
|||
|
}
|
|||
|
}
|
|||
|
return res;
|
|||
|
}
|
|||
|
};
|
|||
|
```
|