2018-09-01 11:45:24 +00:00
|
|
|
|
# [53. Maximum Subarray](https://leetcode.com/problems/maximum-subarray/description/)
|
|
|
|
|
# 思路
|
2020-02-09 11:32:49 +00:00
|
|
|
|
就是一个简单的动态规划。从前往后遍历一遍,用currsum记录以当前位置为结尾的最大子序列和。可见currsum要么等于nums[i]本身,要么等于nums[i]加上上一个currsum,即更新准则为:
|
|
|
|
|
* 如果currsum大于0,那么`currsum += nums[i]`;
|
|
|
|
|
* 否则,则`currsum = nums[i]`。
|
|
|
|
|
|
|
|
|
|
时间复杂度O(n),空间复杂度O(1)
|
|
|
|
|
|
2018-09-01 11:45:24 +00:00
|
|
|
|
# C++
|
2019-09-13 15:08:41 +00:00
|
|
|
|
``` C++
|
2018-09-01 11:45:24 +00:00
|
|
|
|
class Solution {
|
|
|
|
|
public:
|
|
|
|
|
int maxSubArray(vector<int>& nums) {
|
|
|
|
|
int maxsum = nums[0]; // at least one number
|
|
|
|
|
int currsum = nums[0];
|
|
|
|
|
for(int i = 1; i < nums.size(); i++){
|
|
|
|
|
if(currsum > 0) currsum += nums[i];
|
|
|
|
|
else currsum = nums[i];
|
|
|
|
|
|
|
|
|
|
if(currsum > maxsum) maxsum = currsum;
|
|
|
|
|
}
|
|
|
|
|
return maxsum;
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
```
|