mirror of
https://github.com/ShusenTang/LeetCode.git
synced 2024-09-02 14:20:01 +00:00
131 lines
5.3 KiB
Markdown
131 lines
5.3 KiB
Markdown
![]() |
# [239. Sliding Window Maximum](https://leetcode.com/problems/sliding-window-maximum/)
|
|||
|
|
|||
|
# 思路
|
|||
|
|
|||
|
给定一个数组和一个窗口大小k,让窗口从左往右滑动,返回每次窗口内的数字的最大值。
|
|||
|
|
|||
|
## 思路一
|
|||
|
|
|||
|
此题最容易想到的就是利用插入、删除和找到最值都不算慢的数据结构,将窗口内的元素维护在这个数据结构中。所以我们可以利用类似搜索二叉树的结构,例如STL中的map、set和multiset等,但是由于有重复元素,所以我们可以用multiset。
|
|||
|
|
|||
|
有几个注意点:
|
|||
|
* multiset默认是从小到大排序,所以最大值为最后一个元素,即`*st.rbegin()`或`*prev(st.end())`;
|
|||
|
* 我们定义multiset的时候可以传入`greater<int>`类使从大到小排序,这样最大值为`*st.begin()`。
|
|||
|
* 由于有重复数字,但每次只想删除一个,而 `erase(val)` 是将所有val都删掉,所以我们只能提供一个迭代器,代表一个确定的删除位置,即用`erase(find(val))`删除。
|
|||
|
|
|||
|
由于插入删除都是对数级别,所以总的时间复杂度为O(nlogk),额外的空间开辟就是multiset,为O(k)。
|
|||
|
|
|||
|
## 思路二、双向取max
|
|||
|
当k比较大的时候思路一的时间复杂度就显得有点高了,此题还有两个O(n)复杂度的思路,即思路二和思路三。
|
|||
|
|
|||
|
|
|||
|
用一个例子来说明: nums = [2,1,3,4,6,3,8,9,10,12,56], k = 4
|
|||
|
```
|
|||
|
1. 将数组根据窗口大小换分成若干块(最后一块可能不足k):
|
|||
|
2, 1, 3, 4 | 6, 3, 8, 9 | 10, 12, 56
|
|||
|
|
|||
|
2. 从左到右记录到目前位置的最大值,注意每一块分别计算:
|
|||
|
left_max[] = 2, 2, 3, 4 | 6, 6, 8, 9 | 10, 12, 56
|
|||
|
|
|||
|
3. 类似的,从右到左记录到目前位置的最大值,注意每一块分别计算:
|
|||
|
right_max[] = 4, 4, 4, 4 | 9, 9, 9, 9 | 56, 56, 56
|
|||
|
|
|||
|
4. 现在,若某个滑动窗口最右元素为nums[i],那么这个窗口内的最大值就为 max(left_max[i], right_max[i-k+1]);
|
|||
|
```
|
|||
|
简单证明一下,根据当前窗口是否刚好落在之前划分的某一块,可分为两种情况:
|
|||
|
1. 若是,即`(i + 1) % k == 0`,那么`left_max[i]`和`right_max[i-k+1])`相等,均等于窗口内最大值;
|
|||
|
2. 若不是,即窗口会横跨某相邻两块的交界线,这个交界线将窗口划分成左右两个部分,`left_max[i]`即右部分最大值而`right_max[i-k+1])`为左部分最大值。
|
|||
|
|
|||
|
时间复杂度O(n),空间复杂度O(n)
|
|||
|
|
|||
|
|
|||
|
## 思路三、单调队列
|
|||
|
|
|||
|
还有一个O(n)的比较难想的思路,需要用到双向队列deque。
|
|||
|
|
|||
|
核心思想是我们**不把窗口内所有元素都送入deque而是只将有可能成为最大值的元素(的下标)送入deque**。从左往右滑动窗口,若窗口即将把nums[i]包含进来,
|
|||
|
1. 首先,若队首元素下标小于`i - k`,即在窗口之外了,所以应该删除队首元素;
|
|||
|
2. 然后,由于我们仅保留有可能成为最大值的元素(的下标),所以我们应该从**队尾**开始不断去掉比nums[i]小的那些元素(的下标),因为只要窗口内有nums[i],那么去掉的这些元素就不可能成为最大值。
|
|||
|
3. 最后,我们将nums[i](的下标)送入队尾。
|
|||
|
|
|||
|
因此,按照上述过程维护的队列里面的元素是单调递减的,队首的元素即每次窗口内的最大值。
|
|||
|
|
|||
|
这里需要掌握几个修改deque的操作:
|
|||
|
* `push_back`:从队尾加入队列;
|
|||
|
* `push_front`:从队首加入队列;
|
|||
|
* `pop_back`:删除队尾元素;
|
|||
|
* `pop_front`:删除队首元素。
|
|||
|
|
|||
|
时间复杂度O(n),空间复杂度O(n)
|
|||
|
|
|||
|
# C++
|
|||
|
## 思路一
|
|||
|
``` C++
|
|||
|
class Solution {
|
|||
|
public:
|
|||
|
vector<int> maxSlidingWindow(vector<int>& nums, int k) {
|
|||
|
if(nums.empty()) return {};
|
|||
|
int n = nums.size();
|
|||
|
vector<int>res(n - k + 1);
|
|||
|
|
|||
|
multiset<int>st; // 从小到大排序
|
|||
|
//multiset<int, greater<int>>st; // 从大到小排序
|
|||
|
|
|||
|
for(int i = 0, j = 0; i < n; i++){
|
|||
|
if(i >= k) st.erase(st.find(nums[i-k])); // 不能st.erase(nums[i-k])
|
|||
|
st.insert(nums[i]);
|
|||
|
if(i >= k-1) res[j++] = *prev(st.end()); // 或st.rbegin()
|
|||
|
}
|
|||
|
|
|||
|
return res;
|
|||
|
}
|
|||
|
};
|
|||
|
```
|
|||
|
|
|||
|
## 思路二
|
|||
|
``` C++
|
|||
|
class Solution {
|
|||
|
public:
|
|||
|
vector<int> maxSlidingWindow(vector<int>& nums, int k) {
|
|||
|
if(nums.empty()) return {};
|
|||
|
int n = nums.size();
|
|||
|
vector<int>res(n - k + 1);
|
|||
|
vector<int>left_max(n), right_max(n);
|
|||
|
|
|||
|
int maximum = INT_MIN;
|
|||
|
for(int i = 0; i < n; i++)
|
|||
|
left_max[i] = maximum = (i % k == 0) ? nums[i] : max(maximum, nums[i]);
|
|||
|
|
|||
|
maximum = nums.back();
|
|||
|
for(int i = n-1; i >= 0; i--)
|
|||
|
right_max[i] = maximum = ((i + 1) % k == 0) ? nums[i] : max(maximum, nums[i]);
|
|||
|
|
|||
|
for(int i = k-1, j = 0; i < n; i++)
|
|||
|
res[j++] = max(left_max[i], right_max[i-k+1]);
|
|||
|
|
|||
|
return res;
|
|||
|
}
|
|||
|
};
|
|||
|
```
|
|||
|
|
|||
|
## 思路三
|
|||
|
``` C++
|
|||
|
class Solution {
|
|||
|
public:
|
|||
|
vector<int> maxSlidingWindow(vector<int>& nums, int k) {
|
|||
|
vector<int>res;
|
|||
|
deque<int>win;
|
|||
|
|
|||
|
for(int i = 0; i < nums.size(); i++){
|
|||
|
if (!win.empty() && win.front() == i - k) win.pop_front();
|
|||
|
|
|||
|
while(!win.empty() && nums[win.back()] <= nums[i]) win.pop_back();
|
|||
|
|
|||
|
win.push_back(i);
|
|||
|
|
|||
|
if(i >= k - 1) res.push_back(nums[win.front()]);
|
|||
|
}
|
|||
|
return res;
|
|||
|
}
|
|||
|
};
|
|||
|
```
|