2018-11-03 01:43:51 +00:00
|
|
|
|
# [110. Balanced Binary Tree](https://leetcode.com/problems/balanced-binary-tree/description/)
|
|
|
|
|
# 思路
|
2020-02-13 11:58:53 +00:00
|
|
|
|
|
|
|
|
|
## 思路一
|
2018-11-03 01:43:51 +00:00
|
|
|
|
一棵非空树是平衡二叉树的充要条件是:
|
|
|
|
|
* 其左右子树的高相差不超过1;
|
|
|
|
|
* 且左右子树都是平衡二叉树。
|
|
|
|
|
|
2020-02-13 11:58:53 +00:00
|
|
|
|
因此可考虑用一个递归算法,为此还需要一个递归算法求某树的高。
|
|
|
|
|
|
|
|
|
|
## 思路二
|
|
|
|
|
|
|
|
|
|
思路一的代码十分简洁,但是要注意一个节点会被重复遍历多次因此不是最优的算法。为此我们可以考虑用类似后序遍历的思路,在判断左右子树是否是平衡的同时还需要返回左右子树的高(可以通过传入引用实现),这样就可以不用再递归求左右子树的高了,即整个过程只遍历一遍节点。
|
|
|
|
|
|
|
|
|
|
|
2018-11-03 01:43:51 +00:00
|
|
|
|
# C++
|
2020-02-13 11:58:53 +00:00
|
|
|
|
|
|
|
|
|
## 思路一
|
2018-11-03 01:43:51 +00:00
|
|
|
|
``` C++
|
|
|
|
|
class Solution {
|
|
|
|
|
private:
|
|
|
|
|
int getDepth(TreeNode *root){
|
|
|
|
|
if(root == NULL) return 0;
|
|
|
|
|
return 1 + max(getDepth(root -> left), getDepth(root -> right));
|
|
|
|
|
}
|
|
|
|
|
public:
|
|
|
|
|
bool isBalanced(TreeNode* root) {
|
|
|
|
|
if(root == NULL) return true;
|
|
|
|
|
return (abs(getDepth(root -> left) - getDepth(root -> right)) <= 1) && isBalanced(root -> left) && isBalanced(root -> right);
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
```
|
2020-02-13 11:58:53 +00:00
|
|
|
|
|
|
|
|
|
## 思路二
|
|
|
|
|
``` C++
|
|
|
|
|
class Solution {
|
|
|
|
|
private:
|
|
|
|
|
bool helper(TreeNode* root, int &height){
|
|
|
|
|
if(!root){
|
|
|
|
|
height = 0;
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
int l_h = -1, r_h = -1;
|
|
|
|
|
if(helper(root -> left, l_h) && helper(root -> right, r_h)){
|
|
|
|
|
// 此时l_h和r_h已被正确赋值为左右子树的高
|
|
|
|
|
height = 1 + max(l_h, r_h);
|
|
|
|
|
return abs(l_h - r_h) <= 1;
|
|
|
|
|
}
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
public:
|
|
|
|
|
bool isBalanced(TreeNode* root) {
|
|
|
|
|
int height = -1;
|
|
|
|
|
return helper(root, height);
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
```
|