mirror of
https://github.com/ShusenTang/LeetCode.git
synced 2024-09-02 14:20:01 +00:00
123 lines
4.2 KiB
Markdown
123 lines
4.2 KiB
Markdown
![]() |
# [215. Kth Largest Element in an Array](https://leetcode.com/problems/kth-largest-element-in-an-array/)
|
|||
|
|
|||
|
# 思路
|
|||
|
给定一个数组, 要求返回其中第k大的数. 这应该属于常考的面试题了, 务必掌握. 有两个基本的思路: 快排划分的思想和最大(小)堆.
|
|||
|
|
|||
|
时间复杂度平均为O(n)
|
|||
|
|
|||
|
## 思路一
|
|||
|
我们回忆一下快排中的partition函数:
|
|||
|
每次先(任意)确定一个中枢值pivot,然后遍历其他所有的数字,像这道题从大往小排的话,就把大于中枢点的数字放到左半边,
|
|||
|
把小于中枢点的放在右半边,这样中枢点是整个数组中第几大的数字就确定了,虽然左右两部分各自不一定是完全有序的.
|
|||
|
|
|||
|
所以我们只需要调用partition函数,
|
|||
|
* 若得到pivot的最终位置pos刚好就是k-1, 那直接返回nums[k-1];
|
|||
|
* 若得到的pos比k-1小, 那在pos右边继续调用partition;
|
|||
|
* 否则, 在pos左边继续调用partition.
|
|||
|
|
|||
|
其实STL中`nth_element`已经帮我们实现了上述过程, 注意学习使用.
|
|||
|
**`nth_element`只保证第n(从0开始)个元素是位于最终排序位置的, 但其左右两边的元素则不一定有序.**
|
|||
|
|
|||
|
|
|||
|
## 思路二
|
|||
|
用最小堆, 最小堆(实际不是堆是个二叉树)始终保持最小元素在树顶, 那么我们不断去掉top元素知道只剩下k个元素, 那剩下的top元素即所求.
|
|||
|
> 或者用最大堆, 这样我们不断去掉k-1个最大堆树顶元素后第k大的元素就位于树顶了.
|
|||
|
|
|||
|
在STL中, `priority_queue`和`multiset`都可用来作为最小(大)堆, 代码以前者为例, 用`multiset`可以参考[此处](https://leetcode.com/problems/kth-largest-element-in-an-array/discuss/60309/C%2B%2B-STL-partition-and-heapsort)
|
|||
|
|
|||
|
**注意用priority_queue如何实现最大(小)堆, 即如何自定义比较方法(和sort、nth_element、partial_sort函数自定义比较函数写法不一样)**
|
|||
|
|
|||
|
其实, STL里有一个函数可以实现部分排序即`partial_sort`, 给定位置k, 该函数会将位置k前(不包含k)的元素排好序, 而k及之后元素则不一定有序.
|
|||
|
|
|||
|
|
|||
|
> 建议详读[讨论区总结](https://leetcode.com/problems/kth-largest-element-in-an-array/discuss/60309/C%2B%2B-STL-partition-and-heapsort)
|
|||
|
|
|||
|
|
|||
|
# C++
|
|||
|
## 思路一
|
|||
|
``` C++
|
|||
|
class Solution {
|
|||
|
private:
|
|||
|
int partition(vector<int> &nums, int low, int high){
|
|||
|
int i = low, j = high;
|
|||
|
int pivot = nums[low];
|
|||
|
|
|||
|
while(i < j){
|
|||
|
while(i < j && nums[j] < pivot) j--;
|
|||
|
nums[i] = nums[j]; // 将比pivot大的元素移到pivot左边
|
|||
|
|
|||
|
while(i < j && nums[i] >= pivot) i++;
|
|||
|
nums[j] = nums[i]; // 将比pivot小的元素移到pivot右边
|
|||
|
}
|
|||
|
|
|||
|
nums[i] = pivot;
|
|||
|
return i;
|
|||
|
}
|
|||
|
public:
|
|||
|
int findKthLargest(vector<int>& nums, int k){
|
|||
|
int low = 0, high = nums.size() - 1, pos;
|
|||
|
while(true){
|
|||
|
pos = partition(nums, low, high);
|
|||
|
|
|||
|
if(pos == k - 1) return nums[pos];
|
|||
|
if(pos < k - 1) low = pos + 1;
|
|||
|
else high = pos - 1;
|
|||
|
}
|
|||
|
}
|
|||
|
};
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
## 思路一STL版
|
|||
|
``` C++
|
|||
|
class Solution {
|
|||
|
public:
|
|||
|
int findKthLargest(vector<int>& nums, int k) {
|
|||
|
// greater和less都重载了操作符()
|
|||
|
nth_element(nums.begin(), nums.begin() + k - 1, nums.end(), greater<int>());
|
|||
|
return nums[k - 1];
|
|||
|
}
|
|||
|
};
|
|||
|
```
|
|||
|
|
|||
|
## 思路二
|
|||
|
``` C++
|
|||
|
class Solution {
|
|||
|
static bool comp_func(const int &a, const int &b){
|
|||
|
return a > b;
|
|||
|
}
|
|||
|
struct comp_class{
|
|||
|
bool operator()(const int &a, const int &b){
|
|||
|
return a > b;
|
|||
|
}
|
|||
|
};
|
|||
|
public:
|
|||
|
int findKthLargest(vector<int>& nums, int k){
|
|||
|
// 以下三种写法都是可以的. 默认为最大堆: priority_queue<int, vector<int> > pq;
|
|||
|
// priority_queue<int, vector<int>, greater<int>> pq;
|
|||
|
// priority_queue<int, vector<int>, bool (*)(const int &a, const int &b) > pq(comp_func);
|
|||
|
priority_queue<int, vector<int>, comp_class > pq;
|
|||
|
|
|||
|
for (int num : nums) {
|
|||
|
pq.push(num);
|
|||
|
if (pq.size() > k) {
|
|||
|
pq.pop();
|
|||
|
}
|
|||
|
}
|
|||
|
return pq.top();
|
|||
|
}
|
|||
|
};
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
## 思路二STL版
|
|||
|
``` C++
|
|||
|
class Solution {
|
|||
|
public:
|
|||
|
int findKthLargest(vector<int>& nums, int k) {
|
|||
|
partial_sort(nums.begin(), nums.begin() + k, nums.end(), greater<int>());
|
|||
|
return nums[k - 1];
|
|||
|
}
|
|||
|
};
|
|||
|
```
|