mirror of
https://github.com/ShusenTang/LeetCode.git
synced 2024-09-02 14:20:01 +00:00
add 4 🍻
This commit is contained in:
parent
e4cee5d3fb
commit
485079b382
@ -11,6 +11,7 @@ My LeetCode solutions with Chinese explanation. 我的LeetCode中文题解。
|
||||
| 1 |[Two Sum](https://leetcode.com/problems/two-sum)|[C++](https://github.com/ShusenTang/LeetCode/blob/master/solutions/1.%20Two%20Sum.md)|Easy| |
|
||||
| 2 |[Add Two Numbers](https://leetcode.com/problems/add-two-numbers)|[C++](https://github.com/ShusenTang/LeetCode/blob/master/solutions/2.%20Add%20Two%20Numbers.md)|Medium| |
|
||||
| 3 |[Longest Substring Without Repeating Characters](https://leetcode.com/problems/longest-substring-without-repeating-characters)|[C++](https://github.com/ShusenTang/LeetCode/blob/master/solutions/3.%20Longest%20Substring%20Without%20Repeating%20Characters.md)|Medium| |
|
||||
| 4 |[Median of Two Sorted Arrays](https://leetcode.com/problems/median-of-two-sorted-arrays/)|[C++](solutions/4.%20Median%20of%20Two%20Sorted%20Arrays.md)|Hard| |
|
||||
| 5 |[Longest Palindromic Substring](https://leetcode.com/problems/longest-palindromic-substring)|[C++](https://github.com/ShusenTang/LeetCode/blob/master/solutions/5.%20Longest%20Palindromic%20Substring.md)|Medium| |
|
||||
| 6 |[ZigZag Conversion](https://leetcode.com/problems/zigzag-conversion)|[C++](https://github.com/ShusenTang/LeetCode/blob/master/solutions/6.%20ZigZag%20Conversion.md)|Medium| |
|
||||
| 7 |[Reverse Integer](https://leetcode.com/problems/reverse-integer)|[C++](https://github.com/ShusenTang/LeetCode/blob/master/solutions/7.%20Reverse%20Integer.md)|Easy| |
|
||||
|
189
solutions/4. Median of Two Sorted Arrays.md
Normal file
189
solutions/4. Median of Two Sorted Arrays.md
Normal file
@ -0,0 +1,189 @@
|
||||
# [4. Median of Two Sorted Arrays](https://leetcode.com/problems/median-of-two-sorted-arrays/)
|
||||
|
||||
# 思路
|
||||
|
||||
给定两个(递增)排好序的数组,求所有数字的中位数。
|
||||
要求时间复杂度为O(log(m+n)),所以从头到尾合并两个数组直到遇到中位数的方式不可取,因为这样复杂度为O(m+n)。
|
||||
|
||||
## 思路一
|
||||
|
||||
核心思想:**按照中位数的定义将所有元素划分成两个大小相等(或差一)的集合。**
|
||||
|
||||
排好序+对数复杂度这两个条件就相当于告诉我们要用二分的思路。
|
||||
|
||||
先看看中位数的定义:在统计学中,中位数用于
|
||||
* 将集合划分为两个相等长度的子集,
|
||||
* 且一个子集总是大于另一个子集。
|
||||
|
||||
设给的两个数组分别是A和B,我们先随机将A划分成两个部分:
|
||||
|
||||
```
|
||||
left_A | right_A
|
||||
A[0], A[1], ..., A[i-1] | A[i], A[i+1], ..., A[m-1]
|
||||
```
|
||||
所以 i 有m+1中可能,即`0,1,...,m`。
|
||||
|
||||
同理,可将B分成两个部分:
|
||||
```
|
||||
left_B | right_B
|
||||
B[0], B[1], ..., B[j-1] | B[j], B[j+1], ..., B[n-1]
|
||||
```
|
||||
j 可以是`0,1,...,n`。
|
||||
|
||||
我们 left_A 和 left_B 放入同一个集合,将 right_A 和 right_B 放入另外一个集合:
|
||||
```
|
||||
left_part | right_part
|
||||
A[0], A[1], ..., A[i-1] | A[i], A[i+1], ..., A[m-1]
|
||||
B[0], B[1], ..., B[j-1] | B[j], B[j+1], ..., B[n-1]
|
||||
```
|
||||
|
||||
由于我们想求中位数,所以需要满足
|
||||
```
|
||||
1. len(left_part) == len(right_part) (或者相差1, 当m+n为奇数的时候)
|
||||
2. max(left_part) <= min(right_part) <==> B[j-1] <= A[i] && A[i-1] <= B[j]
|
||||
```
|
||||
对应于中位数的定义中的两个条件。
|
||||
|
||||
为了满足第一个条件,我们规定
|
||||
```
|
||||
若 m+n = 2N, 则 len(left_part) == N
|
||||
若 m+n = 2N+1, 则 len(left_part) == N + 1
|
||||
所以这里的 N = (m+n+1)/2
|
||||
|
||||
又因为 len(left_part) == i + j
|
||||
所以 j = N - i
|
||||
```
|
||||
|
||||
为了使`j = N - i`在区间[0, n]内,我们规定**m <= n**。
|
||||
|
||||
第一个条件始终满足后,我们就可以利用第二个条件进行二分了,即在 [0, m] 中进行二分查找,使找到的 i 满足:
|
||||
```
|
||||
B[j-1] <= A[i] && A[i-1] <= B[j], where j = N - i
|
||||
```
|
||||
|
||||
设初始时`min_i = 0, max_i = m`,则算法步骤就是
|
||||
1. 设 `i = (min_i + max_i) / 2, j = N - i`;
|
||||
2. 此时有三种情况:
|
||||
* 若`B[j-1] <= A[i] && A[i-1] <= B[j]`, 即找到了所需的i,停止搜索;
|
||||
* 若`B[j-1] > A[i]`, 意味着 A[i] 太小 B[j-1] 太大,那么我们需增大 i 。因为只有 i 增大时(j 会跟着减小)`B[j-1] <= A[i]`才可能成立。所以,更新`min_i = i+1`, 然后回到步骤1.
|
||||
* 若`A[i-1] > B[j]`, 意味着 A[i-1] 太大 B[j] 太小。所以,更新`max_i = i-1`, 然后回到步骤1.
|
||||
|
||||
上述算法步骤中我们没有考虑边界条件,写代码时需要仔细考虑,而且还需要考虑 m+n 为奇偶时的不同情况:
|
||||
* 若为偶数,所以`len(left_part) == N`且`len(right_part) == N`,所以最终的中位数为`(max_of_left + min_of_right) / 2`。
|
||||
* 若为奇数,所以`len(left_part) == N+1`且`len(right_part) == N`,所以最终的中位数为`max_of_left`。
|
||||
|
||||
时间复杂度O(log(min(m, n))),空间复杂度O(1)
|
||||
|
||||
[参考链接](https://leetcode-cn.com/problems/median-of-two-sorted-arrays/solution/xun-zhao-liang-ge-you-xu-shu-zu-de-zhong-wei-shu-b/)
|
||||
|
||||
## 思路二、求第k小的数
|
||||
|
||||
核心思想:**每次去掉k/2个数,然后递归求第(k - k/2)小的数**
|
||||
|
||||
此题更一般的问法是求第k小的数(设k从1编号),我们设为target。
|
||||
|
||||
我们设两个数组的第 k/2 大的数分别为 a 和 b,
|
||||
* 若 a < b,那么target肯定比 a 大,所以我们可以排除掉第一个数组的前 k/2 个数,我们继续在剩下的元素中找递归找第 k - k/2 大的元素;
|
||||
* 否则,即 a >= b,那么target肯定不比 b 小,所以我们可以排除掉第二个数组的前 k/2 个数,我们继续在剩下的元素中找递归找第 k - k/2 大的元素;
|
||||
|
||||
举个例子来说明,假设题目 k = 7:
|
||||
|
||||
<div>
|
||||
<img width="300" src="img/4/1.png" alt="img1"/>
|
||||
</div>
|
||||
|
||||
可见`a > b`,那么第二个数组的前三个元素可以去除掉了(下图橙色表示去掉的元素),
|
||||
|
||||
<div>
|
||||
<img width="300" src="img/4/2.png" alt="img2"/>
|
||||
</div>
|
||||
|
||||
现在 k = 4,k/2 = 2,此时的`a < b`,那么应该去掉第一个数组的前两个元素,
|
||||
|
||||
<div>
|
||||
<img width="300" src="img/4/3.png" alt="img3"/>
|
||||
</div>
|
||||
|
||||
一次类推直到k = 1:
|
||||
|
||||
<div>
|
||||
<img width="300" src="img/4/4.png" alt="img4"/>
|
||||
</div>
|
||||
|
||||
此时就可以直接返回结果了,结果是`min(a, b)`。
|
||||
|
||||
|
||||
需要注意的是有时候数组的元素不够 k/2 个,所以究竟去掉了多少个元素需要视实际情况而定。
|
||||
|
||||
时间复杂度:每次减少 k/2 个元素,所以时间复杂度是 O(log(k),而 k=(m+n)/2,所以最终的复杂也就是 O(log(m+n))。
|
||||
|
||||
空间复杂度:虽然我们用到了递归,但是可以看到这个递归属于尾递归(即递归调用在函数最末尾),所以编译器不需要不停地堆栈,所以空间复杂度为 O(1)。
|
||||
|
||||
|
||||
[参考链接](https://leetcode-cn.com/problems/median-of-two-sorted-arrays/solution/xiang-xi-tong-su-de-si-lu-fen-xi-duo-jie-fa-by-w-2/)
|
||||
|
||||
|
||||
# C++
|
||||
``` C++
|
||||
class Solution {
|
||||
public:
|
||||
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
|
||||
int m = nums1.size(), n = nums2.size();
|
||||
if(m > n) return findMedianSortedArrays(nums2, nums1);
|
||||
|
||||
// m <= n
|
||||
|
||||
int min_i(0), max_i(m), i, j;
|
||||
const int LEFT_PARTS_NUM = (m + n + 1) / 2;
|
||||
while(min_i <= max_i){
|
||||
i = (min_i + max_i) / 2;
|
||||
j = LEFT_PARTS_NUM - i;
|
||||
|
||||
if(i < m && nums1[i] < nums2[j - 1]) min_i = i + 1;
|
||||
else if(i > 0 && nums1[i-1] > nums2[j]) max_i = i - 1;
|
||||
else{ // find it
|
||||
double max_of_left = max(i > 0 ? nums1[i-1]: INT_MIN,
|
||||
j > 0 ? nums2[j-1]: INT_MIN);
|
||||
|
||||
if((m + n) & 1) return max_of_left;
|
||||
double min_of_right = min(i < m ? nums1[i]: INT_MAX,
|
||||
j < n ? nums2[j]: INT_MAX);
|
||||
return 0.5 * (max_of_left + min_of_right);
|
||||
}
|
||||
}
|
||||
return -1; // 永远不会执行
|
||||
}
|
||||
};
|
||||
```
|
||||
|
||||
## 思路二
|
||||
``` C++
|
||||
class Solution {
|
||||
private:
|
||||
// 从两个有序数组里面找到第k小的元素, k从1开始
|
||||
double helper(const vector<int>& nums1, const vector<int>& nums2,
|
||||
int start1, int start2, int k){
|
||||
if(k == 1) return min(start1 < nums1.size() ? nums1[start1] : INT_MAX,
|
||||
start2 < nums2.size() ? nums2[start2] : INT_MAX);
|
||||
|
||||
// 有一个数组为空
|
||||
if(start1 >= nums1.size()) return (double)nums2[start2 + k - 1];
|
||||
else if(start2 >= nums2.size()) return (double)nums1[start1 + k - 1];
|
||||
|
||||
int i = min(start1 + k / 2, (int)nums1.size());
|
||||
int j = min(start2 + k / 2, (int)nums2.size());
|
||||
|
||||
if(nums1[i - 1] < nums2[j - 1])
|
||||
return helper(nums1, nums2, i, start2, k - i + start1);
|
||||
else
|
||||
return helper(nums1, nums2, start1, j, k - j + start2);
|
||||
}
|
||||
public:
|
||||
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
|
||||
int m = nums1.size(), n = nums2.size();
|
||||
double mid1 = helper(nums1, nums2, 0, 0, (m + n + 1) >> 1);
|
||||
if((m + n) & 1) return mid1;
|
||||
else return 0.5 * (mid1 + helper(nums1, nums2, 0, 0, (m + n + 2) >> 1));
|
||||
}
|
||||
};
|
||||
```
|
BIN
solutions/img/4/1.png
Normal file
BIN
solutions/img/4/1.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 170 KiB |
BIN
solutions/img/4/2.png
Normal file
BIN
solutions/img/4/2.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 182 KiB |
BIN
solutions/img/4/3.png
Normal file
BIN
solutions/img/4/3.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 179 KiB |
BIN
solutions/img/4/4.png
Normal file
BIN
solutions/img/4/4.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 170 KiB |
Loading…
Reference in New Issue
Block a user