add 72. Edit Distance 🍺

This commit is contained in:
ShusenTang 2020-02-29 23:58:45 +08:00
parent 2d823049c3
commit 51811e4ffe
2 changed files with 48 additions and 0 deletions

View File

@ -70,6 +70,7 @@ My LeetCode solutions with Chinese explanation. 我的LeetCode中文题解。
| 69 |[Sqrt(x)](https://leetcode.com/problems/sqrtx)|[C++](https://github.com/ShusenTang/LeetCode/blob/master/solutions/69.%20Sqrt(x).md)|Easy| |
| 70 |[Climbing Stairs](https://leetcode.com/problems/climbing-stairs)|[C++](https://github.com/ShusenTang/LeetCode/blob/master/solutions/70.%20Climbing%20Stairs.md)|Easy| |
| 71 |[Simplify Path](https://leetcode.com/problems/simplify-path/)|[C++](https://github.com/ShusenTang/LeetCode/blob/master/solutions/71.%20Simplify%20Path.md)|Medium| |
| 72 |[Edit Distance](https://leetcode.com/problems/edit-distance/)|[C++](solutions/72.%20Edit%20Distance.md)|Hard| |
| 73 |[Set Matrix Zeroes](https://leetcode.com/problems/set-matrix-zeroes/)|[C++](https://github.com/ShusenTang/LeetCode/blob/master/solutions/73.%20Set%20Matrix%20Zeroes.md)|Medium| |
| 74 |[Search a 2D Matrix](https://leetcode.com/problems/search-a-2d-matrix/)|[C++](https://github.com/ShusenTang/LeetCode/blob/master/solutions/74.%20Search%20a%202D%20Matrix.md)|Medium| |
| 75 |[Sort Colors](https://leetcode.com/problems/sort-colors/)|[C++](https://github.com/ShusenTang/LeetCode/blob/master/solutions/75.%20Sort%20Colors.md)|Medium| |

View File

@ -0,0 +1,47 @@
# [72. Edit Distance](https://leetcode.com/problems/edit-distance/)
# 思路
求编辑距离给定两个字符串word1和word2求word1经过几次操作能变成word2。
根据经验,这种求最值的两个字符串类的问题基本都可以用动归(因为整个问题可以分解成多个子问题求解而且子问题之间有重复),这里也不例外。我们定义
```
dp[i][j] 表示字符串word1[0,1,...,i-1]和word1[0,1,...,j-1]的编辑距离
```
需要仔细考虑一下初始情况,即当两个串中有一个空串时编辑距离就为另一个串的长度,所以我们可以按照下面初始化:
``` C++
dp[0][0] = 0; // 两个空串
for(int i = 1; i <= n1; i++) dp[i][0] = i; // word2是空串
for(int i = 1; i <= n2; i++) dp[0][i] = i; // word1是空串
```
状态转移时有两种情况:
1. `word1[i-1] == word2[j-1]`,那么此时很简单`dp[i][j] = dp[i-1][j-1], dp[i][j]`
2. 否则我们需要分别对word1末尾进行插入、删除和替换取三者最小结果即可即`dp[i][j] = 1 + min(dp[i-1][j-1], min(dp[i][j-1], dp[i-1][j]))`。
可见状态数组里的元素`dp[i][[j]`只与左上三个方向的值(`dp[i-1][j-1], dp[i][j-1], dp[i-1][j]`)有关,所以可用滚动数组优化空间至线性。
时间复杂度O(mn)空间复杂度O(mn)可优化至O(n)
# C++
``` C++
class Solution {
public:
int minDistance(string word1, string word2) {
int n1 = word1.size(), n2 = word2.size();
vector<vector<int>>dp(n1 + 1, vector<int>(n2 + 1, 0));
for(int i = 1; i <= n1; i++) dp[i][0] = i;
for(int i = 1; i <= n2; i++) dp[0][i] = i;
for(int i = 1; i <= n1; i++){
for(int j = 1; j <= n2; j++){
if(word1[i-1] == word2[j-1]) dp[i][j] = dp[i-1][j-1], dp[i][j];
else dp[i][j] = 1 + min(dp[i-1][j-1], min(dp[i][j-1], dp[i-1][j]));
}
}
return dp[n1][n2];
}
};
```