2019-11-13 13:35:22 +00:00
|
|
|
|
# [310. Minimum Height Trees](https://leetcode.com/problems/minimum-height-trees/)
|
|
|
|
|
# 思路
|
|
|
|
|
给定一个可以表示成树的无向图, 可知存在很多种表示法方法, 要求树高最小的树的根节点.
|
|
|
|
|
|
|
|
|
|
brute force思路就是从每个结点出发分别bfs把树高求出来, 然后返回树高最小的对应的根节点就行了. 但是这样要对每个结点进行bfs, 时间复杂度很高会超时.
|
|
|
|
|
|
2020-08-11 12:24:40 +00:00
|
|
|
|
## 思路一
|
|
|
|
|
|
2019-11-13 13:35:22 +00:00
|
|
|
|
题目给了一个提示: How many MHTs can a graph have at most? 稍加思考可以得出最多有两棵,
|
|
|
|
|
而且根节点就是直径(即距离最长的两个叶子间的距离)路径的中心结点, 如果直径为奇数那么只有一棵, 如果直径为偶数则有两棵.
|
2020-08-11 12:24:40 +00:00
|
|
|
|
所以我么可以先把这个直径求出来:
|
|
|
|
|
|
|
|
|
|
从任意点bfs到深度最大叶子,再从该叶子节点bfs到最远节点,第二遍bfs的时候记录每个点的父节点, 最后就可以得到直径路径, 然后返回直径路径的中心结点就行了.
|
|
|
|
|
|
|
|
|
|
时空复杂度为O(n)
|
|
|
|
|
|
|
|
|
|
## 思路二
|
2019-11-13 13:35:22 +00:00
|
|
|
|
|
2020-08-11 12:24:40 +00:00
|
|
|
|
上面的思路需要两次bfs. 其实此题还有个更加简便的方法求直径的中心结点:
|
2019-11-13 13:35:22 +00:00
|
|
|
|
* 去掉当前图的所有叶子节点,重复此操作直到只剩下一个或两个结点。
|
|
|
|
|
|
|
|
|
|
相当于是从最外面向内部进行dfs, 这个思路有点类似拓扑排序, 即题目[210. Course Schedule II](https://leetcode.com/problems/course-schedule-ii/), 可
|
|
|
|
|
参考[210题解](https://github.com/ShusenTang/LeetCode/blob/master/solutions/210.%20Course%20Schedule%20II.md)中的bfs思路.
|
|
|
|
|
|
|
|
|
|
# C++
|
2020-08-11 12:24:40 +00:00
|
|
|
|
## 思路一
|
|
|
|
|
```C++
|
|
|
|
|
class Solution {
|
|
|
|
|
private:
|
|
|
|
|
vector<int>furthest_path_BFS(vector<vector<int>>&G, int start){
|
|
|
|
|
/*
|
|
|
|
|
从start开始bfs到深度最大叶子的一条路径
|
|
|
|
|
*/
|
|
|
|
|
int n = G.size(), cur;
|
|
|
|
|
vector<bool>visited(n, false);
|
|
|
|
|
|
|
|
|
|
vector<int>path(n, -1); // path[i] = j 表示访问路径中节点j的父亲是i
|
|
|
|
|
queue<int>q{{start}};
|
|
|
|
|
|
|
|
|
|
while(!q.empty()){
|
|
|
|
|
cur = q.front(); q.pop();
|
|
|
|
|
visited[cur] = true;
|
|
|
|
|
|
|
|
|
|
for(int i: G[cur]){
|
|
|
|
|
if(!visited[i]){
|
|
|
|
|
q.push(i);
|
|
|
|
|
path[i] = cur;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// 此时cur就是bfs能到达的最远的节点之一
|
|
|
|
|
vector<int>res;
|
|
|
|
|
while(cur != -1){
|
|
|
|
|
res.push_back(cur);
|
|
|
|
|
cur = path[cur];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return res;
|
|
|
|
|
}
|
|
|
|
|
public:
|
|
|
|
|
vector<int> findMinHeightTrees(int n, vector<vector<int>>& edges) {
|
|
|
|
|
vector<vector<int>>G(n);
|
|
|
|
|
|
|
|
|
|
for(auto &e: edges){
|
|
|
|
|
G[e[0]].push_back(e[1]);
|
|
|
|
|
G[e[1]].push_back(e[0]);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
vector<int>tmp = furthest_path_BFS(G, 0);
|
|
|
|
|
vector<int>diameter = furthest_path_BFS(G, tmp[0]); // 最长直径
|
|
|
|
|
|
|
|
|
|
int d = diameter.size();
|
|
|
|
|
if(d % 2) return {diameter[d/2]};
|
|
|
|
|
return {diameter[d/2 - 1], diameter[d/2]};
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
```
|
|
|
|
|
## 思路二
|
2019-11-13 13:35:22 +00:00
|
|
|
|
``` C++
|
|
|
|
|
class Solution {
|
|
|
|
|
public:
|
|
|
|
|
vector<int> findMinHeightTrees(int n, vector<vector<int>>& edges) {
|
|
|
|
|
vector<vector<int>>G(n, vector<int>());
|
|
|
|
|
for(int i = 0; i < edges.size(); i++){
|
|
|
|
|
G[edges[i][0]].push_back(edges[i][1]);
|
|
|
|
|
G[edges[i][1]].push_back(edges[i][0]);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
queue<int>leafs; // 存放当前所有叶子
|
|
|
|
|
for(int i = 0; i < n; i++)
|
|
|
|
|
if(G[i].size() <= 1) leafs.push(i);
|
|
|
|
|
|
|
|
|
|
while(n > 2){
|
|
|
|
|
int cur_size = leafs.size();
|
|
|
|
|
n -= cur_size;
|
|
|
|
|
while(cur_size--){
|
|
|
|
|
int leaf = leafs.front(); leafs.pop();
|
|
|
|
|
int to = G[leaf][0];
|
|
|
|
|
for(int j = 0; j < G[to].size(); j++)
|
|
|
|
|
if(G[to][j] == leaf){
|
|
|
|
|
G[to].erase(G[to].begin()+j);
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
if(G[to].size() == 1) leafs.push(to);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
vector<int>res;
|
|
|
|
|
while(!leafs.empty()){
|
|
|
|
|
res.push_back(leafs.front());
|
|
|
|
|
leafs.pop();
|
|
|
|
|
}
|
|
|
|
|
return res;
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
```
|