mirror of
https://github.com/ShusenTang/LeetCode.git
synced 2024-09-02 14:20:01 +00:00
8.7 KiB
8.7 KiB
315. Count of Smaller Numbers After Self
思路
给定一个数组,计算每个数字右边所有小于这个数字的个数。
思路一、BST
我们从后往前遍历数组,如果某个数字的右边所有数字都是有序的,那么我们就可以使用二分计算该数字右边所有小于这个数字的个数,但是如何维护有序呢,如果使用插入排序,那每次维护有序数组的时间复杂度为O(n),所以总的复杂度为O(n^2),这和暴力法是一样的。
除了有序数组之外,二叉搜索树也可以进行二分。而每次向二叉树里插入元素的复杂度平均为O(logn),所以总的时间复杂度平均就为O(nlogn)。另外,每个节点需要存放以这个节点为根的树有多少个节点。
时间复杂度平均为O(nlogn),空间复杂度为O(n)。注意BST可能会退化成链表,这样时间复杂度就为O(n^2)了。
思路二、归并排序
如果某个元素nums[i]
大于其右边的某个元素nums[j]
(j > i),那么这元素<i, j>
就构成了一个逆序对,所以我们只需要求出以nums[i]
为第一个元素的逆序对个数。
求逆序对最经典的方法就是分治,即归并排序。所以这题我们也可以用归并排序,只需要新增一行代码:在进行merge
时,记录有多少个以nums[i]
开头的逆序对。
时间复杂度为O(nlogn),空间复杂度为O(n)。
思路三、线段树/树状数组
此题还可以用线段树/树状数组做,我们知道线段树和树状数组可以求前缀和,而这题可以转换成求前缀和。具体转换过程如下:
- 我们先遍历一遍数组,确定数组中元素的最小值
MIN
和MAX
,然后想象有一个大小为MAX - MIN
的全0数组arr
,在这个数组上构建线段树/树状数组; - 然后从后往前遍历数组nums,将
arr[nums[i]]++
,更新线段树/树状数组,这样arr
在区间(nums[i], MAX]
的元素和即为nums[i]
右侧它小的元素个数。
时间复杂度O(nlogN),空间复杂度O(N),其中N = MAX - MIN
;
C++
思路一
struct BstNode{
int val, node_num; // node_num记录这棵树有多少节点
BstNode *left, *right;
BstNode(int x): val(x), node_num(1), left(NULL), right(NULL){}
};
class Solution {
private:
void BST_insert(BstNode *root, BstNode *node){
root -> node_num += 1;
if(node -> val >= root -> val){ // 插入到右子树
if(root -> right) BST_insert(root -> right, node);
else root -> right = node;
}
else{ // 插入到左子树
if(root -> left) BST_insert(root -> left, node);
else root -> left = node;
}
}
int count(BstNode *root, int target){
if(!root) return 0;
if(root -> val < target)
return 1 + (root -> left == NULL ? 0 : root -> left -> node_num) \
+ count(root -> right, target);
else return count(root -> left, target);
}
public:
vector<int> countSmaller(vector<int>& nums) {
vector<int>res(nums.size(), 0);
if(nums.empty()) return res;
BstNode *root = new BstNode(nums.back());
for(int i = nums.size() - 2; i >= 0; i--){
res[i] = count(root, nums[i]);
BstNode *node = new BstNode(nums[i]);
BST_insert(root, node);
}
return res;
}
};
思路二
class Solution {
private:
vector<int>res;
void merge_sort(vector<pair<int, int>>&nums_with_idx, int l, int r){
if(l >= r) return;
int mid = (l + r) / 2;
merge_sort(nums_with_idx, l, mid);
merge_sort(nums_with_idx, mid+1, r);
merge(nums_with_idx, l, mid, r);
}
void merge(vector<pair<int, int>>&nums_with_idx, int l, int mid, int r){
vector<pair<int, int>>merged;
int i = l, j = mid + 1;
while(i <= mid && j <= r){
if(nums_with_idx[i].first <= nums_with_idx[j].first){
// 与普通归并排序相比新增的一步, 即记录逆序数:
res[nums_with_idx[i].second] += j - mid - 1; // nums[i]大于nums[mid+1,...,j-1]
merged.push_back(nums_with_idx[i++]);
}
else merged.push_back(nums_with_idx[j++]);
}
while(i <= mid){
res[nums_with_idx[i].second] += j - mid - 1;
merged.push_back(nums_with_idx[i++]);
}
//while(j <= r) merged.push_back(nums_with_idx[j++]);
for(int k = 0; k < merged.size(); k++) nums_with_idx[k+l] = merged[k];
}
public:
vector<int> countSmaller(vector<int>& nums) {
vector<pair<int, int>>nums_with_idx;
res = vector<int>(nums.size(), 0);
for(int i = 0; i < nums.size(); i++)
nums_with_idx.push_back({nums[i], i});
merge_sort(nums_with_idx, 0, nums.size() - 1);
return res;
}
};
思路三、树状数组
class Solution {
public:
int* tree, n;
int lowbit(int x){
return x&(-x);
}
void update(int pos, int delta){
while (pos <= n){
tree[pos] += delta;
pos += lowbit(pos);
}
}
int getSum(int pos){
int ret = 0;
while (pos){
ret += tree[pos];
pos -= lowbit(pos);
}
return ret;
}
vector<int> countSmaller(vector<int>& nums) {
n = nums.size();
vector<int> ret(n);
if (n == 0) return ret;
int minn = -50000, maxx = 50000;
for (int i=0;i<n;++i){
maxx = max(maxx, nums[i]);
minn = min(minn, nums[i]);
}
n = maxx - minn + 2;
tree = new int[n+1];
memset(tree, 0, sizeof(int)*n);
for (int i=nums.size()-1;i>=0;--i){
ret[i] = getSum(nums[i] - minn);
update(nums[i]-minn+1, 1);
}
return ret;
}
};
思路三、线段树
struct SegmentTreeNode{
int start;
int end;
int count;
SegmentTreeNode* left;
SegmentTreeNode* right;
SegmentTreeNode(int _start, int _end):start(_start),end(_end) {
count = 0;
left = NULL;
right = NULL;
}
};
class Solution {
public:
SegmentTreeNode* build(int start, int end){
if (start > end)
return NULL;
SegmentTreeNode* root = new SegmentTreeNode(start, end);
if (start == end){
root->count = 0;
}else{
int mid = start + (end - start)/2;
root->left = build(start, mid);
root->right = build(mid+1, end);
}
return root;
}
int count(SegmentTreeNode* root, int start, int end){
if (root == NULL || start>end)
return 0;
if (start==root->start && end==root->end){
return root->count;
}
int mid = root->start + (root->end - root->start)/2;
int leftcount = 0, rightcount = 0;
if (start <= mid){
if (mid < end)
leftcount = count(root->left, start, mid);
else
leftcount = count(root->left, start, end);
}
if (mid < end){
if (start <= mid)
rightcount = count(root->right, mid+1, end);
else
rightcount = count(root->right, start, end);
}
return (leftcount + rightcount);
}
void insert(SegmentTreeNode* root, int index, int val){
if (root->start==index && root->end==index){
root->count += val;
return;
}
int mid = root->start + (root->end - root->start)/2;
if (index>=root->start && index<=mid){
insert(root->left, index, val);
}
if (index>mid && index<=root->end){
insert(root->right, index, val);
}
root->count = root->left->count + root->right->count;
}
vector<int> countSmaller(vector<int>& nums) {
vector<int> res;
if (nums.empty())
return res;
res.resize(nums.size());
int start = nums[0];
int end = nums[0];
for (int i=1; i<nums.size(); i++){
start = min(start, nums[i]);
end = max(end, nums[i]);
}
SegmentTreeNode* root = build(start, end);
for (int i=nums.size()-1; i>=0; i--){
res[i] = count(root, start, nums[i]-1);
insert(root, nums[i], 1);
}
return res;
}
};