mirror of
https://github.com/ShusenTang/LeetCode.git
synced 2024-09-02 14:20:01 +00:00
79 lines
2.3 KiB
Markdown
79 lines
2.3 KiB
Markdown
# [946. Validate Stack Sequences](https://leetcode.com/problems/validate-stack-sequences/)
|
||
|
||
# 思路
|
||
|
||
输入两个整数序列,第一个序列表示栈的入栈顺序,请判断第二个序列是否可能为该栈的出栈顺序。
|
||
|
||
## 思路一
|
||
|
||
例
|
||
```
|
||
pushed = [1,2,3,4,5]
|
||
popped = [4,5,3,2,1]
|
||
```
|
||
出栈序列第一个是4,我们要什么时候pop出4呢,很明显是当4第一次出现在栈顶的时候(即push了4就要立马pop出),否则为了pop出4需要先pop出在4上面的元素,不符合出栈序列要求。出栈序列后面的元素同理,即是一个**贪心**的过程: 从前往后依次将元素入栈,在这个过程中不断判断栈顶元素是否为下一个popped元素,若是则应该出栈。最后如果栈为空则说明全部出栈了,返回真;否则返回假。
|
||
|
||
时空复杂度均为O(n)
|
||
|
||
## 思路二
|
||
|
||
一开始想到的是暴力法,即模拟出入栈的过程,用DFS回溯。亲测比思路一慢很多很多,就不细说了。
|
||
|
||
# C++
|
||
|
||
## 思路一
|
||
``` C++
|
||
class Solution {
|
||
public:
|
||
bool validateStackSequences(vector<int>& pushed, vector<int>& popped) {
|
||
int n = pushed.size(), pop_i = 0;
|
||
stack<int>stk;
|
||
for(int i = 0; i < n; i++){
|
||
stk.push(pushed[i]);
|
||
while(!stk.empty() && stk.top() == popped[pop_i]){
|
||
stk.pop();
|
||
pop_i++;
|
||
}
|
||
}
|
||
return stk.empty();
|
||
}
|
||
};
|
||
```
|
||
|
||
## 思路二
|
||
``` C++
|
||
class Solution {
|
||
private:
|
||
vector<int>pushed_, popped_;
|
||
int n;
|
||
bool helper(stack<int>&stk, int push_i, int pop_i){
|
||
if(pop_i == n) return true;
|
||
|
||
// 出栈
|
||
if(!stk.empty() && stk.top() == popped_[pop_i]){
|
||
int tmp = stk.top(); stk.pop();
|
||
if(helper(stk, push_i, pop_i + 1)) return true;
|
||
stk.push(tmp);
|
||
}
|
||
|
||
// 入栈
|
||
if(push_i >= n) return false;
|
||
stk.push(pushed_[push_i]);
|
||
if(helper(stk, push_i + 1, pop_i)) return true;
|
||
|
||
return false;
|
||
}
|
||
public:
|
||
bool validateStackSequences(vector<int>& pushed, vector<int>& popped) {
|
||
pushed_ = pushed;
|
||
popped_ = popped;
|
||
n = pushed.size();
|
||
if(n <= 1) return true;
|
||
stack<int>stk, out;
|
||
int i = 0;
|
||
return helper(stk, 0, 0);
|
||
}
|
||
};
|
||
```
|
||
|