mirror of
https://github.com/ShusenTang/LeetCode.git
synced 2024-09-02 14:20:01 +00:00
47 lines
1.9 KiB
Markdown
47 lines
1.9 KiB
Markdown
# [72. Edit Distance](https://leetcode.com/problems/edit-distance/)
|
||
|
||
# 思路
|
||
|
||
求编辑距离:给定两个字符串word1和word2,求word1经过几次操作能变成word2。
|
||
|
||
根据经验,这种求最值的两个字符串类的问题基本都可以用动归(因为整个问题可以分解成多个子问题求解而且子问题之间有重复),这里也不例外。我们定义
|
||
```
|
||
dp[i][j] 表示字符串word1[0,1,...,i-1]和word1[0,1,...,j-1]的编辑距离
|
||
```
|
||
需要仔细考虑一下初始情况,即当两个串中有一个空串时编辑距离就为另一个串的长度,所以我们可以按照下面初始化:
|
||
|
||
``` C++
|
||
dp[0][0] = 0; // 两个空串
|
||
for(int i = 1; i <= n1; i++) dp[i][0] = i; // word2是空串
|
||
for(int i = 1; i <= n2; i++) dp[0][i] = i; // word1是空串
|
||
```
|
||
|
||
状态转移时有两种情况:
|
||
1. `word1[i-1] == word2[j-1]`,那么此时很简单`dp[i][j] = dp[i-1][j-1], dp[i][j]`;
|
||
2. 否则,我们需要分别对word1末尾进行插入、删除和替换,取三者最小结果即可,即`dp[i][j] = 1 + min(dp[i-1][j-1], min(dp[i][j-1], dp[i-1][j]))`。
|
||
|
||
可见状态数组里的元素`dp[i][[j]`只与左上三个方向的值(`dp[i-1][j-1], dp[i][j-1], dp[i-1][j]`)有关,所以可用滚动数组优化空间至线性。
|
||
|
||
时间复杂度O(mn),空间复杂度O(mn)(可优化至O(n))
|
||
|
||
# C++
|
||
``` C++
|
||
class Solution {
|
||
public:
|
||
int minDistance(string word1, string word2) {
|
||
int n1 = word1.size(), n2 = word2.size();
|
||
|
||
vector<vector<int>>dp(n1 + 1, vector<int>(n2 + 1, 0));
|
||
for(int i = 1; i <= n1; i++) dp[i][0] = i;
|
||
for(int i = 1; i <= n2; i++) dp[0][i] = i;
|
||
|
||
for(int i = 1; i <= n1; i++){
|
||
for(int j = 1; j <= n2; j++){
|
||
if(word1[i-1] == word2[j-1]) dp[i][j] = dp[i-1][j-1], dp[i][j];
|
||
else dp[i][j] = 1 + min(dp[i-1][j-1], min(dp[i][j-1], dp[i-1][j]));
|
||
}
|
||
}
|
||
return dp[n1][n2];
|
||
}
|
||
};
|
||
``` |